Nuclear localization of NPR1 is required for activation of PR gene expression.
نویسندگان
چکیده
Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1-green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.
منابع مشابه
Tobacco TTG2 suppresses resistance to pathogens by sequestering NPR1 from the nucleus.
TRANSPARENT TESTA GLABRA (TTG) proteins that contain the WD40 protein interaction domain are implicated in many signalling pathways in plants. The salicylic acid (SA) signalling pathway regulates the resistance of plants to pathogens through defence responses involving pathogenesis-related (PR) gene transcription, activated by the NPR1 (nonexpresser of PR genes 1) protein, which contains WD40-b...
متن کاملA New Twist on Systemic Acquired Resistance: Redox Control of the NPR1–TGA1 Interaction by Salicylic Acid
Systemic acquired resistance (SAR) is a form of broad-range disease resistance in plants that develops after exposure to certain avirulent necrotizing pathogens. Induction of SAR is dependent on the accumulation of the endogenous signaling molecule salicylic acid (SA) and the transmission of the SA signal via the activity of the key regulatory protein NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEI...
متن کاملInteraction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis.
The Arabidopsis thaliana NONEXPRESSER OF PR GENES1 (NPR1, also known as NIM1) protein is an essential positive regulator of salicylic acid (SA)-induced PATHOGENESIS-RELATED (PR) gene expression and systemic acquired resistance (SAR). PR gene activity is regulated at the level of redox-dependent nuclear transport of NPR1. NPR1 interacts with members of the TGA family of transcription factors tha...
متن کاملInducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes
NPR1 is an essential regulator of plant systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens. SAR induction results in accumulation of the signal molecule salicylic acid (SA), which induces defense gene expression via activation of NPR1. We found that in an uninduced state, NPR1 is present as an oligomer formed through intermolecular disulfide bonds. Upon ...
متن کاملMitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid.
Plant senescence is a highly regulated process that can be induced by a range of factors. The nonexpressor of pathogenesis-related genes 1 (npr1) mutant is defective in the salicylic acid (SA) signalling pathway, displaying delayed yellowing during developmental senescence. However, the regulating mechanism of NPR1 on exogenous SA-induced senescence in detached Arabidopsis leaves has not yet be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 12 12 شماره
صفحات -
تاریخ انتشار 2000